Towards a heterogeneous data processing method to support planners in increasing climate resilience: An application on urban heat waves

Authors

Downloads

DOI:

https://doi.org/10.24306/plnxt/119

Keywords:

urban planning, climate change, adaptation, urban heat waves, Italy

Abstract

The urgency of addressing climate change-induced risks is internationally recognised. However, urban and territorial contexts do not yet appear ready to face this challenge. Based on the state of the art, this research proposes the definition of an innovative method for mapping heterogeneous data to support planners in increasing climate resilience. The application of the research project presented in this paper focuses on heat waves in the urban area of the Municipality of Lamezia Terme (Calabria Region, Italy). Taking into account climatic and non-climatic information, the results are useful for planners to identify priority areas and subsequently define an action plan containing appropriate adaptation measures.

Published

2026-01-06

Issue

Section

Research article

Author Biography

Lucia Chieffallo, University of Calabria, Italy

Luca Lazzarini is an Assistant Professor in Spatial Planning at the Laboratorio di Simulazione Urbana 'Fausto Curti' of DAStU/Politecnico di Milano (Italy). Since 2023, he has worked as a Research fellow at the National Biodiversity Future Center (NBFC). His research explores the interfaces between spatial planning and urban biodiversity, with a specific concern on the mapping and monitoring of the socio-spatial impacts of biodiversity-related interventions.

References

Al-Omari, A. A., Shatnawi, N. N., Shbeeb, N. I., Istrati, D., Lagaros, N. D., & Abdalla, K. M. (2024). Utilizing remote sensing and GIS techniques for flood hazard mapping and risk assessment. Civil Engineering Journal, 10(5), 1423–1436. http://dx.doi.org/10.28991/CEJ-2024-010-05-05

Arshad, A., Ashraf, M., Sundari, R. S., Qamar, H., Wajid, M., & Hasan, M. U. (2020). Vulnerability assessment of urban expansion and modelling green spaces to build heat waves risk resiliency in Karachi. International Journal of Disaster Risk Reduction, 46, 101468. https://doi.org/10.1016/j.ijdrr.2019.101468

Bassolino, E., & Verde, S. (2023). Implementazione di un framework metodologico con strumenti ICT per la gestione sostenibile degli spazi aperti urbani in risposta alle ondate di calore. BDC. Bollettino Del Centro Calza Bini, 23(2), 371–398. https://doi.org/10.6093/2284-4732/10500

Beasley, P., Misra, V., Jayasankar, C. B., & Bhardwaj, A. (2023). Heat waves in Florida and their future from high‐resolution regional climate model integrations. International Journal of Climatology, 43(16), 7532–7548. https://doi.org/10.1002/joc.8278

Benami, E., Jin, Z., Carter, M. R., Ghosh, A., Hijmans, R. J., Hobbs, A., Kenduiywo, B., & Lobell, D. B. (2021). Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment, 2(2), 140–159. https://doi.org/10.1038/s43017-020-00122-y

Caldarice, O., Tollin, N., & Pizzorni, M. (2021). The relevance of science-policy-practice dialogue. Exploring the urban climate resilience governance in Italy. City, Territory and Architecture, 8(1), 1–11. https://doi.org/10.1186/s40410-021-00137-y

Cheng, W., Li, D., Liu, Z., & Brown, R. D. (2021). Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of The Total Environment, 799, 149417. https://doi.org/10.1016/j.scitotenv.2021.149417

Chitsaz, F., Gohari, A., Najafi, M. R., Zareian, M. J., & Haghighi, A. T. (2023). Heatwave duration and heating rate in a non‐stationary climate: Spatiotemporal pattern and key drivers. Earth’s Future, 11(12), e2023EF003995. https://doi.org/10.1029/2023EF003995

Cho, H. (2020). Climate change risk assessment for Kurunegala, Sri Lanka: Water and heat waves. Climate, 8(12), 140. https://doi.org/10.3390/cli8120140

Cobbinah, P. B. (2021). Urban resilience in climate change hotspot. Land Use Policy, 100, 104948. https://doi.org/10.1016/j.landusepol.2020.104948

Cotlier, G. I., & Jimenez, J. C. (2022). The extreme heat wave over western North America in 2021: An assessment by means of land surface temperature. Remote Sensing, 14(3), 561. https://doi.org/10.3390/rs14030561

Daniels, E., Bharwani, S., Swartling, Å. G., Vulturius, G., & Brandon, K. (2020). Refocusing the climate services lens: Introducing a framework for co-designing “transdisciplinary knowledge integration processes” to build climate resilience. Climate Services, 19, 100181. https://doi.org/10.1016/j.cliser.2020.100181

Dayan, H., McAdam, R., Juza, M., Masina, S., & Speich, S. (2023). Marine heat waves in the Mediterranean Sea: An assessment from the surface to the subsurface to meet national needs. Frontiers in Marine Science, 10, 1045138. https://doi.org/10.3389/fmars.2023.1045138

Declerck, M., Trifonova, N., Hartley, J., & Scott, B. E. (2023). Cumulative effects of offshore renewables: From pragmatic policies to holistic marine spatial planning tools. Environmental Impact Assessment Review, 101, 107153. https://doi.org/10.1016/j.eiar.2023.107153

Demdoum, K. E., Yunos, M. Y. M., Ujang, N., & Utaberta, N. (2023). The role of street network metrics in shaping distance distributions in a residential neighbourhood. Bulletin of Geography. Socio-economic Series, 62, 71–86. https://doi.org/10.12775/bgss-2023-0035

Di Blasi, C., Marinaccio, A., Gariazzo, C., Taiano, L., Bonafede, M., Leva, A., Morabito, M., Michelozzi, P., & de’ Donato, F. K. (2023). Effects of temperatures and heatwaves on occupational injuries in the agricultural sector in Italy. International Journal of Environmental Research and Public Health, 20(4), 2781. https://doi.org/10.3390/ijerph20042781

Dubey, A. K., Lal, P., Kumar, P., Kumar, A., & Dvornikov, A. Y. (2021). Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment. Environmental Research, 201, 111573. https://doi.org/10.1016/j.envres.2021.111573

Fontana, G., Toreti, A., Ceglar, A., & De Sanctis, G. (2015). Early heat waves over Italy and their impacts on durum wheat yields. Natural Hazards and Earth System Sciences, 15(7), 1631–1637. https://doi.org/10.5194/nhess-15-1631-2015

Francini, M., Chieffallo, L., Palermo, A., & Viapiana, M. F. (2020). A method for the definition of local vulnerability domains to climate change and relate mapping. Two case studies in Southern Italy. Sustainability, 12(22), 9454. https://doi.org/10.3390/su12229454

Green, P. E., Frank, R. E., & Robinson, P. J. (1967). Cluster analysis in test market selection. Management Science, 13(8), B-387.

Greiving, S., & Fleischhauer, M. (2016). National climate change adaptation strategies of European states from a spatial planning and development perspective. In H. Priemus & S. Davoudi (Eds.), Climate change and sustainable cities (pp. 27–48). Routledge.

Hellings, A., & Rienow, A. (2021). Mapping land surface temperature developments in functional urban areas across Europe. Remote Sensing, 13(11), 2111. https://doi.org/10.3390/rs13112111

Huang, W., Shuai, C., Xiang, P., Chen, X., & Zhao, B. (2024). Mapping water scarcity risk in China with the consideration of spatially heterogeneous environmental flow requirement. Environmental Impact Assessment Review, 105, 107400. https://doi.org/10.1016/j.eiar.2023.107400

Infusino, E., Caloiero, T., Fusto, F., Calderaro, G., Brutto, A., & Tagarelli, G. (2021). Characterization of the 2017 summer heat waves and their effects on the population of an area of Southern Italy. International Journal of Environmental Research and Public Health, 18(3), 970. https://doi.org/10.3390/ijerph18030970

Jeon, G., Park, Y., & Guldmann, J. M. (2023). Impacts of urban morphology on seasonal land surface temperatures: Comparing grid- and block-based approaches. ISPRS International Journal of Geo-Information, 12(12), 482. https://doi.org/10.3390/ijgi12120482

Jeong, D. I., Yu, B., & Cannon, A. J. (2023). Unprecedented human‐perceived heat stress in 2021 summer over Western North America: Increasing intensity and frequency in a warming climate. Geophysical Research Letters, 50(24), e2023GL105964. https://doi.org/10.1029/2023GL105964

Klingelhöfer, D., Braun, M., Brüggmann, D., & Groneberg, D. A. (2023). Heatwaves: Does global research reflect the growing threat in the light of climate change? Globalization and Health, 19(1), 56. https://doi.org/10.1186/s12992-023-00955-4

Kramar, U., Dragan, D., & Topolšek, D. (2019). The holistic approach to urban mobility planning with a modified focus group, SWOT, and fuzzy analytical hierarchical process. Sustainability, 11(23), 6599. https://doi.org/10.3390/su11236599

Kundzewicz, Z. W. (2005). Is the frequency and intensity of flooding changing in Europe? In W. Kirch, R. Bertollini, & B. Menne (Eds.), Extreme weather events and public health responses (pp. 25–32). Springer. https://doi.org/10.1007/3-540-28862-7

Leal Filho, W., Wolf, F., Castro-Díaz, R., Li, C., Ojeh, V. N., Gutiérrez, N., Nagy, G. J., Savić, S., Natenzon, C. E., Al-Amin, A. Q., Maruna, M., & Bönecke, J. (2021). Addressing the urban heat islands effect: A cross-country assessment of the role of green infrastructure. Sustainability, 13(2), 753. https://doi.org/10.3390/su13020753

López-Casado, D., & Fernández-Salinas, V. (2023). The expression of illegal urbanism in the urban morphology and landscape: The case of the metropolitan area of Seville (Spain). Land, 12(12), 2108. https://doi.org/10.3390/land12122108

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318

Mariani, L. (2006). Alcuni metodi per l’analisi delle serie storiche in agrometeorologia. Italian Journal of Agrometeorology, 2, 48–56.

Marschütz, B., Bremer, S., Runhaar, H., Hegger, D., Mees, H., Vervoort, J., & Wardekker, A. (2020). Local narratives of change as an entry point for building urban climate resilience. Climate Risk Management, 28, 100223. https://doi.org/10.1016/j.crm.2020.100223

Molina, M. O., Sánchez, E., & Gutiérrez, C. (2020). Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Scientific Reports, 10(1), 8801. https://doi.org/10.1038/s41598-020-65663-0

Naserikia, M., Hart, M. A., Nazarian, N., Bechtel, B., Lipson, M., & Nice, K. A. (2023). Land surface and air temperature dynamics: The role of urban form and seasonality. Science of The Total Environment, 905, 167306. https://doi.org/10.1016/j.scitotenv.2023.167306

Ossola, A., Jenerette, G. D., McGrath, A., Chow, W., Hughes, L., & Leishman, M. R. (2021). Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landscape and Urban Planning, 209, 104046. https://doi.org/10.1016/j.landurbplan.2021.104046

Palermo, A., & Chieffallo, L. (2024). A literature-based climate change risk analysis framework in urban, rural and coastal areas. In 2nd International Conference on Future Challenges in Sustainable Urban Planning & Territorial Management. SUPTM 2024. https://doi.org/10.31428/10317/13538

Palermo, A., Chieffallo, L., & Avolio, E. (2025). Climate sensitivity assessment at the regional scale for spatial planning: A case study in Italy. International Journal of E-Planning Research, 14(1), 1–18. https://doi.org/10.4018/IJEPR.368804

Pappalardo, S. E., Zanetti, C., & Todeschi, V. (2023). Mapping urban heat islands and heat-related risk during heat waves from a climate justice perspective: A case study in the municipality of Padua (Italy) for inclusive adaptation policies. Landscape and Urban Planning, 238, 104831. https://doi.org/10.1016/j.landurbplan.2023.104831

Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A., & Plummer, N. (2001). Report on the activities of the working group on climate change detection and related rapporteurs. Geneva: World Meteorological Organization.

Pörtner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., & Rama, B. (2022). IPCC 2022: Climate change 2022: Impacts, adaptation and vulnerability: Working group II contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

Quesada-Ganuza, L., Garmendia, L., Alvarez, I., & Roji, E. (2023). Vulnerability assessment and categorization against heat waves for the Bilbao historic area. Sustainable Cities and Society, 98, 104805. https://doi.org/10.1016/j.scs.2023.104805

Sarif, M. O., Gupta, R. D., & Murayama, Y. (2022). Assessing local climate change by spatiotemporal seasonal LST and six land indices, and their interrelationships with SUHI and hot–spot dynamics: A case study of Prayagraj City, India (1987–2018). Remote Sensing, 15(1), 179. https://doi.org/10.3390/rs15010179

Schirru, M. R. (2018). The relationship between planning and the prospect of urban regeneration: a pilot project called “A holistic strategy for the regeneration of peri-urban areas in the North-West area of Rome”. WIT Transactions on Ecology and the Environment, 217, 191–202. https://doi.org/10.2495/sdp180181

Sheikh, W. T., & van Ameijde, J. (2022). Promoting livability through urban planning: A comprehensive framework based on the “theory of human needs”. Cities, 131, 103972. https://doi.org/10.1016/j.cities.2022.103972

Shevah, Y. (2015). Water resources, water scarcity challenges, and perspectives. In R. Q. Grafton, K. A. Daniell, C. Nauges, J. R. Renzetti, C. A. M. Smith, & M. J. Williams (Eds.), Water challenges and solutions on a global scale (pp. 185–219). American Chemical Society. https://doi.org/10.1021/bk-2015-1206.ch010

Spruce, J. P., Sader, S., Ryan, R. E., Smoot, J., Kuper, P., Ross, K., Prados, D., Russell, J., Gasser, G., McKellip, R., & Hargrove, W. (2011). Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sensing of Environment, 115(2), 427–437. https://doi.org/10.1016/j.rse.2010.09.013

Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358–368. https://doi.org/10.1016/j.solener.2006.06.014

Sun, S., Wang, Z., Hu, C., & Gao, G. (2021). Understanding climate hazard patterns and urban adaptation measures in China. Sustainability, 13(24), 13886. https://doi.org/10.3390/su132413886

Sun, Y., Li, Y., Ma, R., Gao, C., & Wu, Y. (2022). Mapping urban socio-economic vulnerability related to heat risk: A grid-based assessment framework by combing the geospatial big data. Urban Climate, 43, 101169. https://doi.org/10.1016/j.uclim.2022.101169

Taylor, M., & Bhasme, S. (2021). Between deficit rains and surplus populations: The political ecology of a climate-resilient village in South India. Geoforum, 126, 431–440. https://doi.org/10.1016/j.geoforum.2020.01.007

Uehara, M. (2019). Holistic landscape planning's value for natural disaster reconstruction: Willingness to pay for new residence in different reconstruction planning approaches. GEOMATE Journal, 16(56), 92–97. https://doi.org/10.21660/2019.56.4601

Vanderplanken, K., van den Hazel, P., Marx, M., Shams, A. Z., Guha-Sapir, D., & van Loenhout, J. A. F. (2021). Governing heatwaves in Europe: Comparing health policy and practices to better understand roles, responsibilities and collaboration. Health Research Policy and Systems, 19(1), 1–14 https://doi.org/10.1186/s12961-020-00645-2

Venerandi, A., Aiello, L. M., & Porta, S. (2023). Urban form and COVID-19 cases and deaths in Greater London: An urban morphometric approach. Environment and Planning B: Urban Analytics and City Science, 50(5), 1228–1243. https://doi.org/10.1177/23998083221133397

Wang, Z., Wang, Y., Liu, Y., Wang, F., Deng, W., & Rao, P. (2023). Spatiotemporal characteristics and natural forces of grassland NDVI changes in Qilian Mountains from a sub-basin perspective. Ecological Indicators, 157, 111186. https://doi.org/10.1016/j.ecolind.2023.111186

Wardekker, A. (2021). Contrasting the framing of urban climate resilience. Sustainable Cities and Society, 75, 103258. https://doi.org/10.1016/j.scs.2021.103258

Wu, T., Li, B., Lian, L., Zhu, Y., & Chen, Y. (2022). Assessment of the combined risk of drought and high-temperature heat wave events in the North China Plain during summer. Remote Sensing, 14(18), 4588. https://doi.org/10.3390/rs14184588

Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003

Zhang, R., Sun, C., Zhu, J., Zhang, R., & Li, W. (2020). Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. NPJ Climate and Atmospheric Science, 3(1), 7. https://doi.org/10.1038/s41612-020-0110-8

Zhan-Yun, W. U. (2021). Integrating adaptation to climate change into territorial spatial planning: Progress, dilemma and strategy. Advances in Climate Change Research, 17(5), 559. https://doi.org/10.12006/j.issn.1673-1719.2021.035

Zuccaro, G., & Leone, M. F. (2021). Climate services to support disaster risk reduction and climate change adaptation in urban areas: The CLARITY Project and the Napoli case study. Frontiers in Environmental Science, 9, 693319. https://doi.org/10.3389/fenvs.2021.693319

ویزای استارتاپ luxury gifts